Lesson 2-4: "Using Proof in Algebra"

PROPERTIES OF EQUALITY				
Reflexive Property	For all real numbers x , $x = x$. A number equals itself.			
Symmetric Property	For all real numbers x and y , if $x = y$, then $y = x$. Order of equality does not matter.	These three properties define an equivalence relation		
Transitive Property	For all real numbers x , y , and z , if $x = y$ and $y = z$, then $x = z$. Two numbers equal to the same number are equal to each other.			

Addition	, .
Property	(=)

For all real numbers x, y, and z,

if
$$x = y$$
, then $x + z = y + z$.

Subtraction
Property (=\

For all real numbers x, y, and z,

if
$$x = y$$
, then $x - z = y - z$.

Multiplication
Property (=)

For all real numbers x, y, and z,

if
$$x = y$$
, then $xz = yz$.

Division (-)
Property

For all real numbers x, y, and z,

if
$$x = y$$
, and $z \neq 0$, then $x/z = y/z$.

Distributive Property For all real numbers x, y, and z,

$$x(y+z) = xy + xz.$$

Substitution Property For all numbers a and b, if a = b, then a may be replaced by b in any equation or expression

These properties allow you to balance and solve equations involving real numbers

Properties of Length and Measure

	Segment Length	Angle Measure
Reflexive	For any segment <i>AB</i> , <i>AB</i> = <i>AB</i> .	For any angle <i>A</i> , <i>m</i> ∠ <i>A</i> = <i>m</i> ∠ <i>A</i> .
Symmetric	If $AB = CD$, then $CD = AB$.	If $m\angle A = m\angle B$, then $m\angle B = m\angle A$.
Transitive	If AB = CD and CD = EF, then AB = EF.	If $m\angle A = m\angle B$ and $m\angle B = m\angle C$, then $m\angle A = m\angle C$

Name the property of equality that justifies each statement.

a. If
$$3x = 120$$
, then $x = 40$

b. If
$$12 = AB$$
, then $AB = 12$

c. If AB = BC, and BC = CD, then AB = CD

d. If y = 75 and y = m < A, then m < A = 75

Justify each step in Solving

Statements

Reasons

1.
$$\frac{x}{3} + 4 = 1$$

Given

2.
$$\frac{x}{3} = -3$$

Sub. 200p. (=)

3.
$$x = -9$$

W~1+. 6Lob. (=)

Justify the steps for the proof of the conditional, If <ABD and <DBC are complementary, then <ABC is a right angle.

A	D
В	$\overline{}$
ט	C

Statements

Reasons

- <ABC and <DBC are complementary
- 2. m < ABD + m < DBC = 90
- 3. m < ABD + m < DBC = m < ABC
- m<ABC = 90
- <ABC is a right angle

- Given
- Def. of Comp. Angles
- Angle Addition Postulate
- 4. Substutution Prop. (=)
- Def. of Right Angle