Lesson 2-4: "Using Proof in Algebra" | PROPERTIES OF EQUALITY | | | | | |------------------------|---|---|--|--| | Reflexive
Property | For all real numbers x , $x = x$. A number equals itself. | | | | | Symmetric
Property | For all real numbers x and y , if $x = y$, then $y = x$. Order of equality does not matter. | These three properties define an equivalence relation | | | | Transitive
Property | For all real numbers x , y , and z , if $x = y$ and $y = z$, then $x = z$. Two numbers equal to the same number are equal to each other. | | | | | Addition | , . | |----------|-------------| | Property | (=) | For all real numbers x, y, and z, if $$x = y$$, then $x + z = y + z$. Subtraction Property (=\ For all real numbers x, y, and z, if $$x = y$$, then $x - z = y - z$. Multiplication Property (=) For all real numbers x, y, and z, if $$x = y$$, then $xz = yz$. Division (-) Property For all real numbers x, y, and z, if $$x = y$$, and $z \neq 0$, then $x/z = y/z$. Distributive Property For all real numbers x, y, and z, $$x(y+z) = xy + xz.$$ Substitution Property For all numbers a and b, if a = b, then a may be replaced by b in any equation or expression These properties allow you to balance and solve equations involving real numbers # **Properties of Length and Measure** | | Segment Length | Angle Measure | |------------|--|---| | Reflexive | For any segment <i>AB</i> ,
<i>AB</i> = <i>AB</i> . | For any angle <i>A</i> ,
<i>m</i> ∠ <i>A</i> = <i>m</i> ∠ <i>A</i> . | | Symmetric | If $AB = CD$, then $CD = AB$. | If $m\angle A = m\angle B$, then $m\angle B = m\angle A$. | | Transitive | If AB = CD and CD = EF,
then AB = EF. | If $m\angle A = m\angle B$ and $m\angle B = m\angle C$, then $m\angle A = m\angle C$ | Name the property of equality that justifies each statement. a. If $$3x = 120$$, then $x = 40$ b. If $$12 = AB$$, then $AB = 12$ c. If AB = BC, and BC = CD, then AB = CD d. If y = 75 and y = m < A, then m < A = 75 ### Justify each step in Solving ### **Statements** #### Reasons 1. $$\frac{x}{3} + 4 = 1$$ Given 2. $$\frac{x}{3} = -3$$ Sub. 200p. (=) 3. $$x = -9$$ W~1+. 6Lob. (=) Justify the steps for the proof of the conditional, If <ABD and <DBC are complementary, then <ABC is a right angle. | A | D | |---|---------------| | В | $\overline{}$ | | ט | C | ### **Statements** #### Reasons - <ABC and <DBC are complementary - 2. m < ABD + m < DBC = 90 - 3. m < ABD + m < DBC = m < ABC - m<ABC = 90 - <ABC is a right angle - Given - Def. of Comp. Angles - Angle Addition Postulate - 4. Substutution Prop. (=) - Def. of Right Angle