Unit 2 Learning Goal

GEO.B.11.IndDedReasoning

Use inductive and deductive reasoning to make conjectures both verbally, algebraically, and geometrically.

Lesson 2-5 Learning Target

 I can complete proofs involving segment theorems

<u>Lesson 2-5 Notes:"Verifying Segment</u> <u>Relationships"</u>

Theorem 2-1

Congruence of segments is reflexive, symmetric, and transitive.

Reflexive Property AB ≅ AB

Symmetric Property If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$

Transitive Property If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$

You can use the properties of algebra in geometric proofs. Notice that the symmetric property of equality is used in the proof of Theorem 2-1.

	Given: $\overline{PQ} \cong \overline{RS}$	P	Q
	Prove: $\overline{RS} \simeq \overline{PQ}$	•	
	Proof:	н	S
į	Statements		Reasons
-	1. $\overline{PQ} \cong \overline{RS}$ 2. $PQ = RS$		1. Given
	2. PQ = RS 💆		2. Defl, of =
	3. $RS = PQ$		2. Def. of \(\sigma\) 3. Symmetric 4. Def. of \(\sigma\)
2	4. RS ≅ PQ		4. Def. of =

Definition of congruent Segments
Symmetric Property of (=)
Definition of congruent Segments
Given

Justify each step in the proof:

P Q R S

Given: Points P, Q, R, and S are collinear.

Prove: PQ = PS - QS

Statements	Reasons
1. Points P, Q, R, and S are collinear	(1) Given
2. PS = PQ + QS	Segment Addition Postulate
3. PS - QS = PQ	Subtraction Prop (=)
4. PQ = PS - QS	Symmetric Prop. (=)

Given: \overline{ABCD}

Prove: AD = AB + BC + CD

Proof:

Statements	Reasons	
1. ABCD	1. <u>7</u> Given	
2. AD = AB + BD	2. 7 Segment Addition Postulate	
3. $BD = BC + CD$	3, ? Segment Addition Postulate	
4. AD = AB + BC + CD	4. Z Substitution Property of (=)	

Prove the following.

Given:
$$\overline{AB} \cong \overline{XY}$$

$$\overline{BC} \cong \overline{YZ}$$

Prove:
$$\overline{AC} \cong \overline{XZ}$$

Two-Column Proof

Statements	Reasons
1. $\overline{AB} \cong \overline{XY}, \overline{BC} \cong \overline{YZ}$	1. Given
2. $AB = XY$, $BC = YZ$	2. Definition of congruent segments
3. $AB + BC = XY + YZ$	3. Addition Property (=)
4. AB + BC = AC	4. Segment Addition Postulate
XY + YZ = XZ	
5. AC = XZ	5. Substitution Property (-) with 3
6. $\overrightarrow{AC} \cong \overrightarrow{XZ}$	6. Definition of congruent segments

- Definition of Congruent Segment:
- Given Subst. Prop of (=)
- Add. Prop. of (=)
- Segment Addition Postulate