Special Segments in Triangles

- **1.** Find AB if \overline{BD} is a median of $\triangle ABC$.
- **2.** Find BC if \overline{AD} is an altitude of $\triangle ABC$.

3. Find $m \angle ABC$ if \overline{BD} is an angle bisector of $\triangle ABC$.

In Exercises 4–6, A(2, 5), B(12, -1), and C(-6, 8) are the vertices of \triangle ABC.

- **4.** What are the coordinates of *K* if \overline{CK} is a median of $\triangle ABC$?
- **5.** What is the slope of the perpendicular bisector of \overline{AB} ? What is the slope of \overline{CL} if \overline{CL} is the altitude from point C?
- **6.** Point N on \overrightarrow{BC} has coordinates $\left(\frac{8}{5}, \frac{21}{5}\right)$. Is \overline{NA} an altitude of $\triangle ABC$? Explain your answer.

Student Edition Pages 245–251

j

Right Triangles

For each figure, find the values of x and y so that $\triangle DEF \cong \triangle PQR$ by the indicated theorem or postulate.

1. HA

2. LL

3. LA

4

4. HL

5. Write a two-column proof.

Given: \overline{AB} bisects $\angle DAC$

 $\angle C$ and $\angle D$ are right angles.

Prove: $\overline{BC} \cong \overline{BD}$

Proof:

Statements

Reasons

Indirect Proof and Inequalities

Use the figure at the right to complete each statement with either < or >.

4. If
$$m \angle 15 = m \angle 7$$
 then $m \angle 11$? $m \angle 7$.

Write an indirect proof.

5. Given: $m \angle 1 \neq m \angle 2$

Prove: $\triangle ABC$ is not an isosceles

triangle with vertex B.

6. Given: $m \angle 1 + m \angle 2 \neq 180$

Prove: $a \not \mid b$

1

7. Work Backward Joe spent half of the money in his wallet on a table for his computer printer. He then spent \$8.12 for a printer ribbon. Then he spent half of what he had left on supplies for his office. He then had \$14.50 remaining. How much money did Joe have to start with?

Student Edition Pages 259-265

Inequalities for Sides and Angles of a Triangle

Refer to the figure on the right for Exercises 1-4.

1. Name the shortest and the longest segments in $\triangle BCD$.

- **2.** Name the shortest and the longest segments in $\triangle ABD$.
- 3. Find the shortest segment in the figure.
- **4.** How many of the segments in the figure are longer than \overline{BD} ?
- 5. List the angles in order from least to greatest.

- **6.** List the sides of $\triangle MNO$ in order from longest to shortest if $m \angle M = 4x + 20$, $m \angle N = 2x + 10$, and $m \angle O = 3x 20$.
- 7. List the angles of $\triangle KLM$ in order from least to greatest if KL = x 4, LM = x + 4, KM = 2x 1, and the perimeter of $\triangle KLM$ is 27.

The Triangle Inequality

Determine whether it is possible to draw a triangle with sides of the given measure. Write yes or no.

Determine whether it is possible to have a triangle with the given vertices. Write yes or no, and explain your answer.

7.
$$A(-2, -2), B(-1, 1), C(1, 4)$$

8.
$$A(-4, 2), B(-2, 1), C(2, -1)$$

9.
$$A(2, 5), B(-3, 5), C(6, -1)$$

10.
$$A(3, -6), B(1, 2), C(-2, 10)$$

Two sides of a triangle are 21 and 24 inches long. Determine whether each measurement can be the length of the third side.

If the sides of a triangle have the following lengths, find all possible values for x.

14.
$$AB = 2x + 5$$
, $BC = 3x - 2$, $AC = 4x - 8$

15.
$$PQ = 3x$$
, $QR = 4x - 7$, $PR = 2x + 9$

Student Edition Pages 273-279

Inequalities Involving Two Triangles

Refer to each figure to write an inequality relating the given pair of angle measures.

1. $m \angle PRQ$, $m \angle PRS$

2. $m \angle ABE$, $m \angle DBC$

Write an inequality or pair of inequalities to describe the possible values of x.

3.

4.

Write a two-column proof.

5. Given: $\overline{AD} \cong \overline{EC}$

 $m \angle ADC > m \angle ECD$

Prove: AC > ED

Proof:

A B B

Statements

Reasons

6. Given: D is the midpoint of \overline{AC} .

BC > AB

Prove: $m \angle 1 > m \angle 2$

Proof:

Statements

...

Reasons